Asymptotic Theory for Regressions with Smoothly Changing Parameters

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothly Mixing Regressions

This paper extends the conventional Bayesian mixture of normals model by permitting state probabilities to depend on observed covariates. The dependence is captured by a simple multinomial probit model. A conventional and rapidly mixing MCMC algorithm provides access to the posterior distribution at modest computational cost. This model is competitive with existing econometric models, as docume...

متن کامل

Asymptotic Distribution-free Tests for Semiparametric Regressions

This article proposes a new general methodology for constructing nonparametric asymptotic distribution-free tests for semiparametric hypotheses in regression models. Tests are based on the difference between the estimated restricted and unrestricted regression errors’ distributions. A suitable integral transformation of this difference renders the tests asymptotically distribution-free, with li...

متن کامل

Spurious Regressions with Time-series Data: Further Asymptotic Results

A “spurious regression” is one in which the time-series variables are non-stationary and independent. It is well-known that in this context the OLS parameter estimates and the R converge to functionals of Brownian motions; the “t-ratios” diverge in distribution; and the Durbin-Watson statistic converges in probability to zero. We derive corresponding results for some common tests for the Normal...

متن کامل

REGRESSIONS WITH TWO SLOWLY VARYING REGRESSORS 1 Regressions with Two Slowly Varying Regressors: Hidden Discontinuities in Asymptotic Behavior

Asymptotic behavior of the OLS estimator for regressions with two slowly varying regressors is studied. It is shown that the asymptotic distribution may belong to one of four types depending on the relative rates of growth of the regressors. The paper expands and corrects recent results by P.C.B.Phillips (2007).

متن کامل

Asymptotic Theory for Kriging with Estimated Parameters and Its Application to Network Design

A second-order expansion is established for predictive distributions in Gaussian processes with estimated covariances. Particular focus is on estimating quantiles of the predictive distribution and their subsequent application to prediction intervals. Two basic approaches are considered, (a) a “plug-in” approach using the restricted maximum likelihood estimate of the covariance parameters, (b) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Time Series Econometrics

سال: 2013

ISSN: 1941-1928,2194-6507

DOI: 10.1515/jtse-2012-0024